loading...
دانلود پایان نامه و پروژه
یگانه عربخانی بازدید : 162 شنبه 09 بهمن 1395 نظرات (0)

ترانسفورماتور

ترانسفورماتوردسته: برق
بازدید: 3 بار
فرمت فایل: doc
حجم فایل: 63 کیلوبایت
تعداد صفحات فایل: 98

مقدمه امروزه با توسعه روز افزونی که در طی چند دهه اخیر در سطح زندگی مردم کشورمان مشاهده می شود استفاده از برق وسایل برقی شتاب و گسترش رو افزونی یافته به گونه ای که بیش از 60% مردم کشورمان حداقل از یکی وسایل برقی خانگی استفاده می کنند، که پیش بینی می شود با گسترش هر چه بیشتر شبکه برق رسانی کشور طی سالهای آینده میزان استفاده از وسایل برقی نیز افز

قیمت فایل فقط 8,100 تومان

خرید

ترانسفورماتور

 


 

مقدمه:

 

امروزه با توسعه روز افزونی که در طی چند دهه اخیر در سطح زندگی مردم کشورمان مشاهده می شود استفاده از برق وسایل برقی شتاب و گسترش رو افزونی یافته به گونه ای که بیش از 60% مردم کشورمان حداقل از یکی وسایل برقی خانگی استفاده می کنند، که پیش بینی می شود با گسترش هر چه بیشتر شبکه برق رسانی کشور طی سالهای آینده میزان استفاده از وسایل برقی نیز افزایش بیشتری پیدا کند.

 

ترانس تقویت که در این طرح به بررسی آن می پردازیم امروز به عنوان یکی از دستگاههای مکمل دیگر محصولات برقی خانگی مانند یخچال و تلویزیون و ... بازار مصرف خود را در میان  مصرف کنندگان علی الخصوص طی سالهای اخیر شبکه برق کشور توام با قطع و وصل و نوسانات بیشتری بوده ، به سرعت ایجاد نموده ، به گونه ای که محصول فوق به خصوص طی سالهای اخیر جزو کالاهای کمیاب درآمده و دارای نرخهای متفاوتی در بازار رسمی و آزاد بوده است .

 

کالاهای فوق به غیر از مصارف خانگی که فوقاء بدان اشاره شد در قالب واحدهای خدماتی و صنعتی نیز که از وسایل برقی استفاده می کند مورد مصرف دارد .

 

این کالا در حال حاضر در داخل کشور تولید می گردد و تولید کنندگان عمده این محصول کارخانجات فاراتل ، با خزر ترانس ، راسیکو، کالای گنجینه ایرانفرد و تعاونی صنعتی 12 بهمن می باشد که مجموعا بیش از 60% تولیدات کشور را در دست دارند .

 

بجز واحدهای فوق در واحد دیگر در داخل کشور محصول فوق را تولید می نمایند که در حدود 15 واحد آن بدون هیچ گونه پروانه ای مشغول ساخت این محصول می باشد .

 

علاوه بر تولید محصول فوق در داخل کشور آمار اداره کل گمرکات کشور حاکی از آن است که طی سالها ی 63 ، 67 مقادیر زیادی ترانس تقویت وارد بازار ایران گردیده است.

 

جدول زیر آمار واردات محصول فوق را جهت ترانسهای تقویت تا 2 کیلو وات و 2 کیلو وات به بالا حاوی ارزش ریالی واردات سالهای فوق را نشان می دهد .

 

این کالا عمدتا توسط کشورهای شوروی ، لهستان ، تایوان ، آلمان غربی ، انگلستان ، فنلاند ، فرانسه ، بلژیک ، سوئیس ، اسپانیا ساخته و وارد بازار ایران گردیده است .

 

2- ویژگی ها و مشخصات فنی محصول

 

در حال حاضر انواع ترانس های تقویت خانگی و خدماتی در رنج 500 الی 7000 وات تولید می شود که همگی دارای پروسه تولید یکسانی می باشد ، اما بر طبق بررسی های انجام شده ، عمده مصرف بازار ترانس تقویت 2 کیلو وات می باشد که بر مبنای همین مدل بررسی های بعدی صورت پذیرفته که می تواند به عنوان مبنا ی محاسبه قیمت تمام شده و فروش انواع ترانس تقویت مورد نظر قرار گیرد . همچنین باید یادآور شد که ترانس هایی که عمدتا در بازار مورد مصرف قرار می گیرد ترانس های  اتوماتیک می باشد . و ترانس های دستی ( سلکتوری ) بازار مصرف کمی دارد ، قیمت تمام شده آنها نیز بیشتر می باشد و در حال حاضر عمدتا واحدهای تولیدی به تولید ترانس اتوماتیک می پردازند و ترانس های سلکتوری در واحدهای بدون پروانه تولید می گردد.

 

لذا در اینجا ما به بررسی فنی و اقتصادی و مالی در زمینه ترانس تقویت اتوماتیک 2 کیلو وات       (سه مرحله تقویت ) پرداخته و جهت ترانس سلکتوری و ترانس 6 کیلو وات فقط به ذکر مواد اولیه مورد نیاز اکتفا می کنیم .

 

همچنین از آنجا که در ترانس های تقویت ، ترانسفورماتور مربوطه رکن اساسی و با اهمیت آنرا تشکیل می دهد و باید مطابق استانداردهای بین المللی تولید گردد، لذا در ابتدا به بررسی ترانسفورماتور می پردازیم .

 

1-2- کلیات

 

-تعریف ترانسفورماتور

 

ترانسفورماتور یکی از وسایل بسیار مهم تبدیل کمیاب جریان و ولتاژ الکتریکی متناوب است ، که بر خلاف ماشین های الکتریکی که انرژی الکتریکی و مکانیکی را بهم تبدیل می کند ، ترانسفورماتور در نوع انرژی تغییری نمی دهد بلکه ولتاژ و جریان را با همان فرکانس جریان متناوب انتقال دهد ، بطوریکه انرژی ولتاژ پائین را تبدیل به همان انرژی بالاتر می نماید و همچنین جریان را از مقدار داده شده در یک مدار به جریانی با اندازه های متفاوت در مدار دیگر تبدیل کند .

 

امروزه ترانسفورماتور وسیله ای لازم و ضروری در دستگاههای انتقال انرژی الکتریکی و بخش و توزیع انرژی الکتریکی متناوب است .

 

ترانسفورماتورها بطور بسیار وسیعی در مدارهای وسایل الکترونیکی و مدارهاو دستگاههای خودکار یا اتوماتیک و راه اندازی موتورهای الکتریکی و تطبیق ولتاژ مورد نیاز جهت تغذیه مصرف کننده هایی از قبیل یکسو سازها و مبدل های جریان دائم به جریان متناوب ، شارژ کننده های باطری و ایجاد دستگاههای چندین فازه از دستگاههای دو فازه و سه فازه و در ارتباطات به منظور تطبیق امپدانس و همچنین در سیستم های قدرت به منظور بالا بردن ولتاژ برای انتقال اقتصادی قدرت یعنی پایین آوردن ولتاژ به مقادیر مورد نیاز بکار می رود.

 

همچنین ترانسفورماتور یک وسیله بسیار ضروری در مدارهای اندازه گیری الکتریکی و در مدار های جوشکاری و کوره های الکتریکی است . بعنوان یک مجزا کننده مدار با ولتاژ زیاد از مدارهای با ولتاژ پایین و حذف کننده مولدهای مستقیم جریان در یک مدار دستگاه انرژی نیز بکار می رود .

 

 1-1-2-اساس کار  ترانسفورماتور :

 

اساس کار ترانسفورماتورها بر القا الکترو مغناطیسی متقابل بین دو سیم پیچ که بر روی هسته آهنی قرار دارد . مبنا نهاده شده است ،  ترانسفورماتورها انواع مختلفی دارند .

 

1-   ترانسفورماتورهای جدا کننده ، ترانسفورماتورها یی هستند که سیم پیچ های آنها از نظر الکتریکی از هم جدا می باشند و برای تحقق تدابیر حفاظتی «جداسازی حفاظتی» برای اتصال به مصرف کننده جریان بکار می رود .

 

2-   ترانسفورماتورهای عایق، ترانسفورماتورهایی هستند که سیم پیچ های آنها از نظر الکتریکی از هم جدا می باشند و برای انتقال انرژی ها بین سیستم های با پتانسیل های بسیار مختلف که در آنها ولتاژ عایق نسبت به ولتاژ اسمی ترانسفورماتور معین نشده است. به کار میروند.

 

3-   ترانسفورماتور های کنترل، ترانسفورماتورهایی هستند که سیم پیچ های آنها از نظر الکتریکی از یکدیگر جدا می باشند. و برای تهیه مواد کنترل به کار می روند.

 

4-   ترانسفورماتورهای منبع تغذیه، ترانسفورماتورهایی هستند با یک یا چند سیم پیچ ثانویه که از سیم پیچ اولیه از نظر الکتریکی جدا می باشد.

 

5-   اتو ترانسفورماتورها، ترانسفورماتورهایی هستند که سیم پیچ اولیه و ثانویه آنها با هم مشترک می باشند.

 

6-   ترانسفورماتورهای جرقه زن، ترانسفورماتورهایی هستند که سیم پیچ های آنها از نظر الکتریکی از یکدیگر جدا می باشند و برای مشتمل کردن مخلوط هوا و گاز یا هوا و روغن به وسیله جرقه یا قوس الکتریکی به کار می روند.

 

فهرست مطالب:         

 

 

چكیده نتایج

 

پیشگفتار

 

2-ویژگیها و مشخصات فنی محصول

 

1-2-كلیات

 

1-1-2 اساس كارترانسفورماتور

 

2-1-2 مشخصات فنی

 

3-1-2 قطعات تشكیل دهنده محصول

 

4-1-2 هسته ترانسفورماتور

 

5-1-2 قرقره بوبین

 

6-1-2 سیم پیچ ها

 

7-1-2 مواد عایق

 

8-1-2 مقدار فضای لازم

 

9-1-2 استاندار جهانی محصول

 

10-2-1 شماره

 

 

قیمت فایل فقط 8,100 تومان

خرید

برچسب ها : ترانسفورماتور , دانلود و خرید مقاله ترانسفورماتور , خرید و دانلود مقاله ترانسفورماتور , دانلود رایگان مقاله ترانسفورماتور , دانلود مقاله ترانسفورماتور , دانلود رایگان تحقیق ترانسفورماتور , اهورا فایل , فروشگاه فایل اهورا , ترانسفورماتور چیست؟ , پروژه , پژوهش , مقاله , جزوه , تحقیق , دانلود پروژه , دانلود پژوهش , دانلود مقاله , دانلود جزوه , دانلود تحقیق

یگانه عربخانی بازدید : 133 شنبه 15 آبان 1395 نظرات (0)

ترانسفورماتور تکفاز و سه فاز

ترانسفورماتور تکفاز و سه فازدسته: برق
بازدید: 18 بار
فرمت فایل: docx
حجم فایل: 19164 کیلوبایت
تعداد صفحات فایل: 86

ترانسفورماتور یك وسیله الكترومغناطیسی ساكن است

قیمت فایل فقط 5,000 تومان

خرید

ترانسفورماتور تکفاز و سه فاز

 

ترانسفورماتور یك وسیله الكترومغناطیسی ساكن است كه می تواند انرژی جریان متناوب را از مداری به مدار دیگر فقط با حفظ اندازه فركانس انتقال دهد و معمولاً به عنوان مبدل ولتاژ به كار می رود. یك ترانسفورماتور از دو سیم پیچ كه بر روی یك هسته مغناطیسی ( مثلاً هوا یا آهن ) پیچیده شده اند، تشكیل می شود.

 

فهرست مطالب:

بخش اول : ترانس تكفاز

مقدمه

ساختمان ترانسفورماتور تكفاز

هسته

سیم پیچ ها

ترانسفورماتور ایده آل ( تكفاز )

محاسبه تعداد دور سیم پیچها

زاویه اختلاف فاز بین ولتاژ اولیه و ثانویه

تبدیل امپدانس توسط ترانس

ترانسفورماتور واقعی ( حقیقی ) تكفاز

مدار معادل ترانسفورماتور واقعی

ترانسفورماتور ایده آل بدون بار

ترانسفورماتور واقعی بدون بار ( با تلفات اما بدون نشت مغناطیسی )

ترانسفورماتور واقعی با بار ( با مقاومت سیم پیچ ها و بدون نشت مغناطیسی )

ترانسفورماتور واقعی با بار ( با مقاومت سیم پیچ ها و با نشت مغناطیسی )

مدار معادل ترانسفورماتور واقعی از دید اولیه

تنظیم ولتاژ ( رگولاسیون ولتاژ )

دیاگرام ساده شده و نمودار فیزوری ترانسفورماتور

نمودار فیزوری ترانسفورماتور

دیاگرام رگولاسیون كاپ

ولتاژ اتصال كوتاه ترانس

مشخصه خارجی ترانسفورماتور

تلفات و راندمان ترانسفورماتور

تلفات هسته ( آهنی )

بررسی ضریب توان (قدرت ) ترانس

آزمایش های ترانسفورماتور

آزمایش بی باری یا مدار باز (OCT یا NLT)

آزمایش اتصال كوتاه (SCT)

راندمان شبانه روزی ( 24 ساعتی )

راندمان سالیانه

مقادیر نامی ( اسمی ) ترانسفورماتور

جریان یورشی ( هجومی ) ترانس

جریان اتصال كوتاه در ترانس

جریان گذرا

جریان اتصال كوتاه دائم

موازی كردن ترانس های تكفاز

حالت های مختلف موازی كردن دو ترانس

حالت ایده آل

حالت با نسبتهای ولتاژ مساوی

حالت با نسبت های ولتاژ نابرابر

اتوترانس ( ترانسفورماتور صرفه ای )

فرمول صرفه‌جویی در مس

تبدیل ترانسفورماتور دو سیمه به اتوترانس

به صورت پلاریته افزایشی

به صورت پلاریته كاهشی

ترانس‌های اندازه‌گیری

ترانسفورماتور جریان

ترانسفورماتور ولتاژ

بخش دوم : ترانسفورماتورهای سه فاز

معرفی و ساختمان ترانس سه فاز

ترانسفورماتورهای سه فاز یكپارچه

اتصال با سیم صفر

اتصال بدون سیم صفر

اتصال مثلث-مثلث یا دلتا دلتا

اتصال ستاره- مثلث

اتصال مثلث- ستاره

اتصال ستاره- زیگزاگ

اتصال مثلث-زیگزاگ

اتصال مثلث باز

اتصال ستاره باز – مثلث باز

اتصال اسكات

اتصال سه فاز

تنظیم ولتاژ در ترانسهای سه فاز

گروه‌های اتصال (برداری) در ترانس سه فاز

موازی كردن ترانس‌های سه فاز

سهم بار دو ترانس سه فاز موازی

هارمونیك‌ها در ترانسفورماتور

هارمونیكها در ترانسفورماتور تكفاز

هارمونیك‌ها در ترانسفورتور سه فاز

معایب هارمونیك‌ها

معایب هارمونیك‌ها

هارمونیك‌های ولتاژ

روش‌های حذف هارمونیك‌ها

تهویه (خنك كردن ) ترانسفورماتورها

قیمت فایل فقط 5,000 تومان

خرید

برچسب ها : ترانسفورماتور تکفاز و سه فاز , ترانسفورماتور تکفاز و سه فاز , ترانسفورماتور , سیم پیچ , تحقیق , پژوهش , پروژه , مقاله , دانلود تحقیق , دانلود پژوهش , دانلود پروژه , دانلود مقاله

یگانه عربخانی بازدید : 201 جمعه 07 آبان 1395 نظرات (0)

تحقیق در مورد ترانسفورماتور

تحقیق در مورد ترانسفورماتوردسته: برق
بازدید: 3 بار
فرمت فایل: doc
حجم فایل: 167 کیلوبایت
تعداد صفحات فایل: 103

ترانس تقویت که در این طرح به بررسی آن می پردازیم امروز به عنوان یکی از دستگاههای مکمل دیگر محصولات برقی خانگی مانند یخچال و تلویزیون و بازار مصرف خود را در میان مصرف کنندگان علی الخصوص طی سالهای اخیر شبکه برق کشور توام با قطع و وصل و نوسانات بیشتری بوده ، به سرعت ایجاد نموده

قیمت فایل فقط 10,000 تومان

خرید

تحقیق در مورد ترانسفورماتور


مقدمه
امروزه با توسعه روز افزونی که در طی چند دهه اخیر در سطح زندگی مردم کشورمان مشاهده می شود استفاده از برق وسایل برقی شتاب و گسترش رو افزونی یافته به گونه ای که بیش از 60% مردم کشورمان حداقل از یکی وسایل برقی خانگی استفاده می کنند، که پیش بینی می شود با گسترش هر چه بیشتر شبکه برق رسانی کشور طی سالهای آینده میزان استفاده از وسایل برقی نیز افزایش بیشتری پیدا کند.

ترانس تقویت که در این طرح به بررسی آن می پردازیم امروز به عنوان یکی از دستگاههای مکمل دیگر محصولات برقی خانگی مانند یخچال و تلویزیون و ... بازار مصرف خود را در میان مصرف کنندگان علی الخصوص طی سالهای اخیر شبکه برق کشور توام با قطع و وصل و نوسانات بیشتری بوده ، به سرعت ایجاد نموده ، به گونه ای که محصول فوق به خصوص طی سالهای اخیر جزو کالاهای کمیاب درآمده و دارای نرخهای متفاوتی در بازار رسمی و آزاد بوده است .

کالاهای فوق به غیر از مصارف خانگی که فوقاء بدان اشاره شد در قالب واحدهای خدماتی و صنعتی نیز که از وسایل برقی استفاده می کند مورد مصرف دارد .

این کالا در حال حاضر در داخل کشور تولید می گردد و تولید کنندگان عمده این محصول کارخانجات فاراتل ، با خزر ترانس ، راسیکو، کالای گنجینه ایرانفرد و تعاونی صنعتی 12 بهمن می باشد که مجموعا بیش از 60% تولیدات کشور را در دست دارند .

بجز واحدهای فوق در واحد دیگر در داخل کشور محصول فوق را تولید می نمایند که در حدود 15 واحد آن بدون هیچ گونه پروانه ای مشغول ساخت این محصول می باشد .

علاوه بر تولید محصول فوق در داخل کشور آمار اداره کل گمرکات کشور حاکی از آن است که طی سالها ی 63 ، 67 مقادیر زیادی ترانس تقویت وارد بازار ایران گردیده است.

جدول زیر آمار واردات محصول فوق را جهت ترانسهای تقویت تا 2 کیلو وات و 2 کیلو وات به بالا حاوی ارزش ریالی واردات سالهای فوق را نشان می دهد .

این کالا عمدتا توسط کشورهای شوروی ، لهستان ، تایوان ، آلمان غربی ، انگلستان ، فنلاند ، فرانسه ، بلژیک ، سوئیس ، اسپانیا ساخته و وارد بازار ایران گردیده است .

قیمت فایل فقط 10,000 تومان

خرید

برچسب ها : تحقیق در مورد ترانسفورماتور , ترانسفورماتور , تحقیق در مورد ترانسفورماتور , مقاله در مورد ترانسفورماتور , پروژه در مورد ترانسفورماتور , دانلود تحقیق , دانلود پروژه , دانلود مقاله

یگانه عربخانی بازدید : 118 یکشنبه 31 مرداد 1395 نظرات (0)

حفاظت ژنراتور

حفاظت ژنراتوردسته: مکانیک
بازدید: 1 بار
فرمت فایل: doc
حجم فایل: 69 کیلوبایت
تعداد صفحات فایل: 41

ژنراتورهای سنکرون ماشینی است که برای تبدیل انرژی مکانیکی به انرژی الکتریکیac به کار می روددر ژنراتور سنکرون یک ولتاژ dc به رتور داده می شود تا میدان مغانطیسی رتور شکل بگیرد و سپس رتور به حرکت در می اید و در سیم پیچ های استاتور ولتاژ سه فاز القاء می کند

قیمت فایل فقط 5,500 تومان

خرید

حفاظت ژنراتور

 

ژنراتورهای سنکرون ماشینی است که برای تبدیل انرژی مکانیکی به انرژی الکتریکیac  به کار می رود.در ژنراتور سنکرون یک ولتاژ  dc به رتور داده می شود تا میدان مغانطیسی رتور شکل بگیرد و سپس رتور به حرکت در می اید و در سیم پیچ های استاتور ولتاژ سه فاز القاء می کند.برای رساندن جریان dc به رتور مکانیزم خاصی مورد نظر است

1-رساندن توان از یک منبع خارجی به رتور توسط حلقه های لغزان و جاروبکها(در این حالت استهلاک زیاد است وبیشتر در ژنراتورهای کوچک کاربرد دارد)

2-رساندن توان از یک منبع خاص که مستقیما بر روی محور ژنراتور نصب شده است(در ژنراتورهای بزرگ)

ژنراتورهای سنکرون طبق تعریف سنکرون هستند.بدین معنا که فرکانس الکتریکی تولید شده با سرعت چرخش مکانیکی قفل می گردد.ولتاژ داخلی تولید شده داخلی در ژنراتور مستقیما با فوران و فرکانس متناسب است.

 

ژنراتورها به عنوان تولید کننده انرژی به صورت سنکرون با شبکه در حال بهره برداری بوده تحت تاثیر شبکه مصرف و تغییرات مداوم بار واقع می باشند بهره برداری مرتب و منظم ژنراتورها در هر لحظه به کیفیت بهره برداری شبکه بستگی داشته در صورت بروز هرگون اختلال

در شبکه احتمال خارج گشتن ژنراتور از حالت سنکرون موجود می باشد.

 روش اتصال ژنراتور به شبکه و تامین مصرف داخلی:

ژنراتورها مشابه سایر تجیهیزات برقی با کلید به شبکه سه فاز استفاده وصل می شود به منظور انتقال قدرت تولیدی به شبکه از ترانسفورماتور بالابر استفاده می شود این روش برای تمام ژنراتورهای که قرار است در شبکه های گسترده مورد استفاده قرارگیرند استفاده می شود و چون ولتاژ تولیدی ژنراتورها از ولتاژ انتقال کمتر می باشد باید از این ترانسفورماتور بالابر ولتاژ استفاده شود و اینکه  چرا شبکه های برق ولتاژ را تحت ولتاژ بالا انتقال می دهند  به دلیل صرفه اقتصادی.

  بنابراین ژنراتورها با استفاده از یک کلید به شبکه وصل می شوند هنگامی که شبکه مصرف هم ولتاژ با خروجی ژنراتور باشد ژنراتور بدون ترانس و به صورت مستقیم مصرف کننده ها را تغذیه می کند کلید قبل از ترانس بالابر استفاده می شود  و قبل از ترانس بالابر یک شین وجود دارد که از آن برای مصرف داخلی ژنراتور استفاده می شود به منظور راه اندازی نیروگاه به نیروی کمکی نیاز می باشد انرژی مورد نیاز برای راه اندازسیستم های خنک کننده و سیستم های روغن کاری مدار تحریک پمپ سوخت و ... به مصرف داخلی ژنراتور معروف می باشد

هنگامی که قدرت ژنراتور از حدود 100مگاوات تجاوز می نماید نصب کلید در خروجی ژنراتور با مشکلات زیادی همراه خواهد بود چون قطع وصل این کلید جریان زیادی را طلب می کند و برای قطع ووصل این جریان باید کنتاکت های بسیار بزرگی داشته باشیم که این کنتکت ها وزن زیادی خواهند داشت و عملا برای ژنراتور ها ی به این بزرگی استفاده

از کلید بعد ازترانسفورماتور بالابر استفاده می شود.

اتصالی های سه

 فاز و فاز-فاز در ژنراتورها

اتصالی های فازدر سیم پیچی استاتور ،شامل عیوب دو فاز و سه فاز با هم،در ردیف خطرناک ترین  نوع اتصالی ها محسوب می شود.بروز این اتصالی ها در سیم پیچ استاتور با برقراری حداکثر جریان عیب همراه بوده ،جریان عیب با مقدار قابل ملاحظه بالغ بر چند ده برابر جریان اسمی ژنراتور به صورت قوس در محل اتصالی صدمه و خسارات فراوان را به

سیم پیچی ها و ایزولاسیون آنان وارد می سازد.بدین برقراری جریان اتصالی موجب سوختن سیم پیچی ها وایزولاسیون آنها می گردد.جریان عیب در محل اتصالی شامل جریان القاء شده در سیم پیچ های ژنراتور و جریان برقرار شده از شبکه خارج به داخل ژنراتور می باشد

حفاظت ژنراتور(قسمت اول):  

انتخاب طرح حفاظتی برای ژنراتور مستقیما به عوامل زیر وابسته است: 

ظرفیت ژنراتور 

سطح ولتاژ و نحوه اتصال ژنراتور به شبکه 

وضعیت نقطه نوترال 

موارد 1 و 2 در قسمتهای آینده و در بخش طرحهای حفاظتی آورده میشود. اما در مورد شماره 3 روشهای کلی زیر متداول است:

 

اتصال مستقیم نوترال به زمین 

اتصال نقطه نوترال با امپدانس 

نوع فایل:word

سایز :69.2 KB 

تعداد صفحه :41

قیمت فایل فقط 5,500 تومان

خرید

برچسب ها : حفاظت ژنراتور , حفاظت ژنراتور , ژنراتور , ژنراتورهای سنکرون , رتور , ولتاژ سه فاز , حلقه های لغزان , ترانسفورماتور , تحقیق , جزوه , مقاله , پایان نامه , پروژه , دانلود تحقیق , دانلود جزوه , دانلود مقاله , دانلود پروژه

یگانه عربخانی بازدید : 132 دوشنبه 07 تیر 1395 نظرات (0)

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

 

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباعدسته: برق
بازدید: 1 بار
فرمت فایل: doc
حجم فایل: 4266 کیلوبایت
تعداد صفحات فایل: 143

در سالهای اخیر، مسایل جدی كیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، كه بدلیل شدت استفاده از تجهیزات الكترونیكی حساس در فرآیند اتوماسیون است

قیمت فایل فقط 20,000 تومان

خرید

 مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

 

چكیده

در سالهای اخیر، مسایل جدی كیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، كه بدلیل شدت استفاده از تجهیزات الكترونیكی حساس در فرآیند اتوماسیون است. وقتی كه دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممكن است این تجهیزات درست كار نكند، و موجب توقف تولید و هزینه­ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می­شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می­شود. تعداد و ویژگیهای افت ولتاژها كه بعنوان عملكرد افت ولتاژها در باسهای مشتریان شناخته می­شود، ممكن است با یكدیگر و با توجه به مكان اصلی خطاها فرق كند. تفاوت در عملكرد افت ولتاژها  یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مكانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملكرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می­شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین­تر تعریف می­شود. بواسطه امپدانس ترانسفورماتور كاهنده، انتشار در جهت معكوس، چشمگیر نخواهد بود. عملكرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می­توان ارزیابی كرد. هر چند ممكن است این عملكرد در پایانه­های تجهیزات، بواسطه اتصالات سیم­پیچهای ترانسفورماتور مورد استفاده در ورودی كارخانه، دوباره تغییر كند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات كارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه­سازی انواع اتصالات سیم پیچها بررسی می­کند و در نهایت نتایج را ارایه می­نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می­شود.

 

كلید واژه­ها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی.

 

Key words:  Voltage Sag, Transformer Modeling, Transformer Connection, Saturation, Simulation.

 

فهرست مطالب

 

1-1 مقدمه. 2

1-2 مدلهای ترانسفورماتور. 3

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4

1-2-2 مدل ترانسفورماتور قابل اشباع  Saturable Transformer Component (STC Model) 6

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models. 7

2- مدلسازی ترانسفورماتور. 13

2-1 مقدمه. 13

2-2 ترانسفورماتور ایده آل.. 14

2-3 معادلات شار نشتی.. 16

2-4 معادلات ولتاژ. 18

2-5 ارائه مدار معادل.. 20

2-6 مدلسازی ترانسفورماتور دو سیم پیچه. 22

2-7 شرایط پایانه ها (ترمینالها). 25

2-8 وارد کردن اشباع هسته به شبیه سازی.. 28

2-8-1 روشهای وارد کردن اثرات اشباع هسته. 29

2-8-2 شبیه سازی رابطه بین و ........... 33

2-9 منحنی اشباع با مقادیر لحظهای.. 36

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای.. 36

2-9-2 بدست آوردن ضرایب معادله انتگرالی.. 39

2-10 خطای استفاده از منحنی مدار باز با مقادیر rms. 41

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان.. 43

2-11-1 حل عددی معادلات دیفرانسیل.. 47

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل.. 53

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن.. 57

3-1 مقدمه. 57

3-2 دامنه افت ولتاژ. 57

3-3 مدت افت ولتاژ. 57

3-4 اتصالات سیم پیچی ترانس.... 58

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور. 59

§3-5-1 خطای تكفاز، بار با اتصال ستاره، بدون ترانسفورماتور. 59

§3-5-2 خطای تكفاز، بار با اتصال مثلث، بدون ترانسفورماتور. 59

§3-5-3 خطای تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 60

§3-5-4 خطای تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 60

§3-5-5 خطای تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 60

§3-5-6 خطای تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 60

§3-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور. 61

§3-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور. 61

§3-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 61

§3-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 61

§3-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 62

§3-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 62

§3-5-13 خطاهای دو فاز به زمین.. 62

3-6 جمعبندی انواع خطاها 64

3-7 خطای Type A ، ترانسفورماتور Dd.. 65

3-8 خطای Type B ، ترانسفورماتور Dd.. 67

3-9 خطای Type C ، ترانسفورماتور Dd.. 69

3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd.. 72

3-11 خطای Type E ، ترانسفورماتور Dd.. 72

3-12 خطاهای نامتقارن ، ترانسفورماتور Yy.. 73

3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg.. 73

3-14 خطای Type A ، ترانسفورماتور Dy.. 73

3-15 خطای Type B ، ترانسفورماتور Dy.. 74

3-16 خطای Type C ، ترانسفورماتور Dy.. 76

3-17 خطای Type D ، ترانسفورماتور Dy.. 77

3-18 خطای Type E ، ترانسفورماتور Dy.. 78

3-19 خطای Type F ، ترانسفورماتور Dy.. 79

3-20 خطای Type G ، ترانسفورماتور Dy.. 80

3-21 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD.. 81

شبیه سازی با برنامه نوشته شده. 83

3-22 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD.. 85

شبیه سازی با برنامه نوشته شده. 87

3-23 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD.. 89

شبیه سازی با برنامه نوشته شده. 91

3-24 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD.. 93

شبیه سازی با برنامه نوشته شده. 95

3-25 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای  Type E شبیه سازی با PSCAD.. 97

شبیه سازی با برنامه نوشته شده. 99

3-26 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD.. 101

شبیه سازی با برنامه نوشته شده. 103

3-27 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD.. 105

شبیه سازی با برنامه نوشته شده. 107

3-28 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type D در باس 5. 109

3-29 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type G در باس 5. 112

3-30 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type A در باس 5. 115

4- نتیجه گیری و پیشنهادات... 121

مراجع. 123

 

فهرست شكلها

 

شكل (1-1) مدل ماتریسی ترانسفورماتور با اضافه كردن اثر هسته

صفحه 5

شكل (1-2) ) مدار ستاره­ی مدل ترانسفورماتور قابل اشباع

صفحه 6

شكل (1-3) ترانسفورماتور زرهی تک فاز

صفحه 9

شكل (1-4) مدار الکتریکی معادل شكل (1-3)

صفحه 9

شكل (2-1) ترانسفورماتور

صفحه 14

شكل (2-2) ترانسفورماتور ایده ال

صفحه 14

شكل (2-3) ترانسفورماتور ایده ال بل بار

صفحه 15

شكل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

صفحه 16

شكل (2-5) مدرا معادل ترانسفورماتور

صفحه 20

شكل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

صفحه 24

شكل (2-7) ترکیب RL موازی

صفحه 26

شکل (2-8) ترکیب RC موازی

صفحه 27

شكل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

صفحه 30

شكل (2-10) رابطه بین  و           

صفحه 30

شكل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

صفحه 32

شكل (2-12) رابطه بین و

صفحه 32

شكل (2-13) رابطه بین و

صفحه 32

شكل (2-14) منحنی مدار باز با مقادیر  rms

صفحه 36

شكل (2-15) شار پیوندی متناظر شكل (2-14) سینوسی

صفحه 36

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

صفحه 36

شكل (2-17) منحنی مدار باز با مقادیر لحظه­ای

صفحه 40

شكل (2-18) منحنی مدار باز با مقادیر rms

صفحه 40

شكل (2-19) میزان خطای استفاده از منحنی rms  

صفحه 41

شكل (2-20) میزان خطای استفاده از منحنی لحظه­ای

صفحه 41

شكل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

صفحه 42

شكل (2-22) مدار معادل الكتریكی ترانسفورماتور سه فاز سه ستونه

صفحه 43

شكل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

صفحه 44

شكل (2-24) ترانسفورماتور پنج ستونه

صفحه 45

شكل (2-25) انتگرالگیری در یك استپ زمانی به روش اولر

صفحه 47

شكل (2-26) انتگرالگیری در یك استپ زمانی به روش trapezoidal

صفحه 49

شكل (3-1) دیاگرام فازوری خطاها

صفحه 62

شكل (3-2) شكل موج ولتاژ Vab

صفحه 63

شكل (3-3)  شكل موج ولتاژ Vbc

صفحه 63

شكل (3-4) شكل موج ولتاژ Vca

صفحه 63

شكل (3-5)  شكل موج ولتاژ Vab

صفحه 63

شكل (3-6) شكل موج جریان iA

صفحه 64

شكل (3-7) شكل موج جریان iB

صفحه 64

شكل (3-8) شكل موج جریان iA

صفحه 64

شكل (3-9) شكل موج جریان iA

صفحه 64

شكل (3-10)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 65

شكل (3-11)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 68

شكل (3-12)  شكل موجهای جریان ia , ib , ic

صفحه 68

شكل (3-13)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شكل (3-14)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شكل (3-15)  شكل موجهای جریان , iB iA

صفحه 69

شكل (3-16)  شكل موج جریان iA

صفحه 70

شكل (3-16)  شكل موج جریان iB

صفحه 70

شكل (3-17)  شكل موج جریان iC

صفحه 70

شكل (3-18)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 71

شكل (3-19)  شكل موجهای جریان ia , ib , ic

صفحه 71

شكل (3-20)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 73

شكل (3-21)  شكل موجهای جریان ia , ib , ic

صفحه 73

شكل (3-22)  شكل موجهای جریان ia , ib , ic

صفحه 74

شكل (3-23) شكل موج ولتاژ Va

صفحه 74

شكل (3-24) شكل موج ولتاژ Vb

صفحه 74

شكل (3-25) شكل موج ولتاژ Vc

صفحه 74

شكل (3-26) شكل موج جریانiA

صفحه 74

شكل (3-27) شكل موج جریان iB

صفحه 74

شكل (3-28) شكل موج جریان iC

صفحه 74

شكل (3-29) شكل موج جریانiA

صفحه 75

شكل (3-30) شكل موج جریان iB

صفحه 75

شكل (3-31) موج جریان iC

صفحه 75

شكل (3-32) شكل موج جریانiA

صفحه 75

شكل (3-33) شكل موج جریان iB

صفحه 75

شكل (3-34) شكل موج جریان iC

صفحه 75

شكل (3-35) شكل موج ولتاژ Va

صفحه 76

شكل (3-36) شكل موج ولتاژ Vb

صفحه 76

شكل (3-37) شكل موج ولتاژ Vc

صفحه 76

شكل (3-38) شكل موج جریانiA

صفحه 76

شكل (3-39) شكل موج جریان iB

صفحه 76

شكل (3-40) شكل موج جریان iC

صفحه 76

شكل (3-41) شكل موج جریانiA

صفحه 76

شكل (3-42) شكل موج جریان iB

صفحه 76

شكل (3-43) شكل موج جریان iC

صفحه 76

شكل (3-44) شكل موج ولتاژ Va

صفحه 77

شكل (3-45) شكل موج ولتاژ Vb

صفحه 77

شكل (3-46) شكل موج ولتاژ Vc

صفحه 77

شكل (3-47) شكل موج جریانiA

صفحه 77

شكل (3-48) شكل موج جریان iB

صفحه 77

شكل (3-49) شكل موج جریان iC

صفحه 77

شكل (3-50) شكل موج جریانiA

صفحه 77

شكل (3-51) شكل موج جریان iB

صفحه 77

شكل (3-52) شكل موج جریان iC

صفحه 77

شكل (3-53) شكل موج ولتاژ Va

صفحه 78

شكل (3-54) شكل موج ولتاژ Vb

صفحه 78

شكل (3-55) شكل موج ولتاژ Vc

صفحه 78

شكل (3-56) شكل موج جریانiA

صفحه 78

شكل (3-57) شكل موج جریان iB

صفحه 78

شكل (3-58) شكل موج جریان iC

صفحه 78

شكل (3-59) شكل موج جریانiA

صفحه 78

شكل (3-60)  شكل موج جریان iB

صفحه 78

شكل (3-61) شكل موج جریان iC

صفحه 78

شكل (3-62) شكل موج ولتاژ Va

صفحه 79

شكل (3-63) شكل موج ولتاژ Vb

صفحه 79

شكل (3-64) شكل موج ولتاژ Vc

صفحه 79

شكل (3-65) شكل موج جریانiA

صفحه 79

شكل (3-66) شكل موج جریان iB

صفحه 79

شكل (3-67) شكل موج جریان iC

صفحه 79

شكل (3-68) شكل موج جریانiA

صفحه 79

شكل (3-69) شكل موج جریان iB

صفحه 79

شكل (3-70) شكل موج جریان iC

صفحه 79

شكل (3-71) شكل موج ولتاژ Va

صفحه 80

شكل (3-72)  شكل موج ولتاژ Vb

صفحه 80

شكل (3-73) شكل موج ولتاژ Vc

صفحه 80

شكل (3-74) شكل موج جریانiA

صفحه 80

شكل (3-75) شكل موج جریان iB

صفحه 78

شكل (3-76) شكل موج جریان iC

صفحه 80

شكل (3-77) شكل موج جریانiA

صفحه 80

شكل (3-78) شكل موج جریان iB

صفحه 80

شكل (3-79) شكل موج جریان iC

صفحه 80

شكل (3-80) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شكل (3-81) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شكل (3-82) شكل موجهای جریان) (kV با PSCAD

صفحه 82

شكل (3-83) شكل موجهای جریان) (kV با PSCAD

صفحه 82

شكل (3-84) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شكل (3-85) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شكل (3-86) شكل موجهای جریان با برنامه نوشته شده

صفحه 84

شكل (3-87) شكل موجهای جریان با برنامه نوشته شده

صفحه 84

شكل (3-88) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شكل (3-89) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شكل (3-90) شكل موجهای جریان) (kV با PSCAD

صفحه 86

شكل (3-91) شكل موجهای جریان) (kV با PSCAD

صفحه 86

شكل (3-92) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شكل (3-93) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شكل (3-94) شكل موجهای جریان با برنامه نوشته شده

صفحه 88

شكل (3-95) شكل موجهای جریان با برنامه نوشته شده

صفحه 88

شكل (3-96) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شكل (3-97) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شكل (3-98) شكل موجهای جریان) (kV با PSCAD

صفحه 90

شكل (3-99) شكل موجهای جریان) (kV با PSCAD

صفحه 90

شكل (3-100) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شكل (3-101) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شكل (3-102) شكل موجهای جریان با برنامه نوشته شده

صفحه 92

شكل (3-103) شكل موجهای جریان با برنامه نوشته شده

صفحه 92

شكل (3-104) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شكل (3-105) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شكل (3-106) شكل موجهای جریان) (kV با PSCAD

صفحه 94

شكل (3-107) شكل موجهای جریان) (kV با PSCAD

صفحه 94

شكل (3-108) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شكل (3-109) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شكل (3-110) شكل موجهای جریان با برنامه نوشته شده

صفحه 96

شكل (3-111) شكل موجهای جریان با برنامه نوشته شده

صفحه 96

شكل (3-112) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شكل (3-113) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 97

 شكل (3-114) شكل موجهای جریان) (kV با PSCAD

صفحه 98

شكل (3-115) شكل موجهای جریان) (kV با PSCAD

صفحه 98

شكل (3-116) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شكل (3-117) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شكل (3-118) شكل موجهای جریان با برنامه نوشته شده

صفحه 100

شكل (3-119) شكل موجهای جریان با برنامه نوشته شده

صفحه 100

شكل (3-120) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شكل (3-121) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شكل (3-122) شكل موجهای جریان) (kV با PSCAD

صفحه 102

شكل (3-123) شكل موجهای جریان) (kV با PSCAD

صفحه 102

شكل (3-124) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شكل (3-125) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شكل (3-126) شكل موجهای جریان با برنامه نوشته شده

صفحه 104

شكل (3-127) شكل موجهای جریان با برنامه نوشته شده

صفحه 104

شكل (3-128) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شكل (3-129) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شكل (3-130) شكل موجهای جریان) (kV با PSCAD

صفحه 106

شكل (3-131) شكل موجهای جریان) (kV با PSCAD

صفحه 106

شكل (3-132) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شكل (3-133) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شكل (3-134) شكل موجهای جریان با برنامه نوشته شده

صفحه 108

شكل (3-135) شكل موجهای جریان با برنامه نوشته شده

صفحه 108

شكل (3-136) شكل موجهای ولتاژ) (kV

صفحه 109

شكل (3-137) شكل موجهای ولتاژ) (kV

صفحه 110

شكل (3-138) شكل موجهای جریان (kA)

صفحه 111

شكل (3-139) شكل موجهای ولتاژ) (kV

صفحه 112

شكل (3-140) شكل موجهای ولتاژ) (kV

صفحه 113

شكل (3-141) شكل موجهای جریان (kA)

صفحه 114

شكل (3-142) شكل موجهای جریان (kA)

صفحه 115

شكل (3-143) شكل موجهای جریان (kA)

صفحه 116

شكل (3-144) شكل موجهای جریان (kA)

صفحه 117

شكل (3-145) شبكه 14 باس IEEE

صفحه 118

قیمت فایل فقط 20,000 تومان

خرید

برچسب ها : مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع , پایان نامه , مدلسازی , شبیه سازی , اثر اتصالات , ترانسفورماتور , چگونگی انتشار , تغییرات ولتاژ , شبکه , اثر اشباع , پروژه , پژوهش , پایان نامه , مقاله , جزوه , دانلود پروژه , دانلود پژوهش , دانلود پایان نامه , دانلود مقاله , دان

یگانه عربخانی بازدید : 138 دوشنبه 07 تیر 1395 نظرات (0)

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

 

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباعدسته: برق
بازدید: 1 بار
فرمت فایل: doc
حجم فایل: 4266 کیلوبایت
تعداد صفحات فایل: 143

در سالهای اخیر، مسایل جدی كیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، كه بدلیل شدت استفاده از تجهیزات الكترونیكی حساس در فرآیند اتوماسیون است

قیمت فایل فقط 20,000 تومان

خرید

 مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

 

چكیده

در سالهای اخیر، مسایل جدی كیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، كه بدلیل شدت استفاده از تجهیزات الكترونیكی حساس در فرآیند اتوماسیون است. وقتی كه دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممكن است این تجهیزات درست كار نكند، و موجب توقف تولید و هزینه­ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می­شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می­شود. تعداد و ویژگیهای افت ولتاژها كه بعنوان عملكرد افت ولتاژها در باسهای مشتریان شناخته می­شود، ممكن است با یكدیگر و با توجه به مكان اصلی خطاها فرق كند. تفاوت در عملكرد افت ولتاژها  یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مكانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملكرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می­شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین­تر تعریف می­شود. بواسطه امپدانس ترانسفورماتور كاهنده، انتشار در جهت معكوس، چشمگیر نخواهد بود. عملكرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می­توان ارزیابی كرد. هر چند ممكن است این عملكرد در پایانه­های تجهیزات، بواسطه اتصالات سیم­پیچهای ترانسفورماتور مورد استفاده در ورودی كارخانه، دوباره تغییر كند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات كارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه­سازی انواع اتصالات سیم پیچها بررسی می­کند و در نهایت نتایج را ارایه می­نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می­شود.

 

كلید واژه­ها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی.

 

Key words:  Voltage Sag, Transformer Modeling, Transformer Connection, Saturation, Simulation.

 

فهرست مطالب

 

1-1 مقدمه. 2

1-2 مدلهای ترانسفورماتور. 3

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4

1-2-2 مدل ترانسفورماتور قابل اشباع  Saturable Transformer Component (STC Model) 6

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models. 7

2- مدلسازی ترانسفورماتور. 13

2-1 مقدمه. 13

2-2 ترانسفورماتور ایده آل.. 14

2-3 معادلات شار نشتی.. 16

2-4 معادلات ولتاژ. 18

2-5 ارائه مدار معادل.. 20

2-6 مدلسازی ترانسفورماتور دو سیم پیچه. 22

2-7 شرایط پایانه ها (ترمینالها). 25

2-8 وارد کردن اشباع هسته به شبیه سازی.. 28

2-8-1 روشهای وارد کردن اثرات اشباع هسته. 29

2-8-2 شبیه سازی رابطه بین و ........... 33

2-9 منحنی اشباع با مقادیر لحظهای.. 36

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای.. 36

2-9-2 بدست آوردن ضرایب معادله انتگرالی.. 39

2-10 خطای استفاده از منحنی مدار باز با مقادیر rms. 41

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان.. 43

2-11-1 حل عددی معادلات دیفرانسیل.. 47

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل.. 53

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن.. 57

3-1 مقدمه. 57

3-2 دامنه افت ولتاژ. 57

3-3 مدت افت ولتاژ. 57

3-4 اتصالات سیم پیچی ترانس.... 58

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور. 59

§3-5-1 خطای تكفاز، بار با اتصال ستاره، بدون ترانسفورماتور. 59

§3-5-2 خطای تكفاز، بار با اتصال مثلث، بدون ترانسفورماتور. 59

§3-5-3 خطای تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 60

§3-5-4 خطای تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 60

§3-5-5 خطای تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 60

§3-5-6 خطای تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 60

§3-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور. 61

§3-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور. 61

§3-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 61

§3-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 61

§3-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 62

§3-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 62

§3-5-13 خطاهای دو فاز به زمین.. 62

3-6 جمعبندی انواع خطاها 64

3-7 خطای Type A ، ترانسفورماتور Dd.. 65

3-8 خطای Type B ، ترانسفورماتور Dd.. 67

3-9 خطای Type C ، ترانسفورماتور Dd.. 69

3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd.. 72

3-11 خطای Type E ، ترانسفورماتور Dd.. 72

3-12 خطاهای نامتقارن ، ترانسفورماتور Yy.. 73

3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg.. 73

3-14 خطای Type A ، ترانسفورماتور Dy.. 73

3-15 خطای Type B ، ترانسفورماتور Dy.. 74

3-16 خطای Type C ، ترانسفورماتور Dy.. 76

3-17 خطای Type D ، ترانسفورماتور Dy.. 77

3-18 خطای Type E ، ترانسفورماتور Dy.. 78

3-19 خطای Type F ، ترانسفورماتور Dy.. 79

3-20 خطای Type G ، ترانسفورماتور Dy.. 80

3-21 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD.. 81

شبیه سازی با برنامه نوشته شده. 83

3-22 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD.. 85

شبیه سازی با برنامه نوشته شده. 87

3-23 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD.. 89

شبیه سازی با برنامه نوشته شده. 91

3-24 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD.. 93

شبیه سازی با برنامه نوشته شده. 95

3-25 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای  Type E شبیه سازی با PSCAD.. 97

شبیه سازی با برنامه نوشته شده. 99

3-26 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD.. 101

شبیه سازی با برنامه نوشته شده. 103

3-27 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD.. 105

شبیه سازی با برنامه نوشته شده. 107

3-28 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type D در باس 5. 109

3-29 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type G در باس 5. 112

3-30 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type A در باس 5. 115

4- نتیجه گیری و پیشنهادات... 121

مراجع. 123

 

فهرست شكلها

 

شكل (1-1) مدل ماتریسی ترانسفورماتور با اضافه كردن اثر هسته

صفحه 5

شكل (1-2) ) مدار ستاره­ی مدل ترانسفورماتور قابل اشباع

صفحه 6

شكل (1-3) ترانسفورماتور زرهی تک فاز

صفحه 9

شكل (1-4) مدار الکتریکی معادل شكل (1-3)

صفحه 9

شكل (2-1) ترانسفورماتور

صفحه 14

شكل (2-2) ترانسفورماتور ایده ال

صفحه 14

شكل (2-3) ترانسفورماتور ایده ال بل بار

صفحه 15

شكل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

صفحه 16

شكل (2-5) مدرا معادل ترانسفورماتور

صفحه 20

شكل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

صفحه 24

شكل (2-7) ترکیب RL موازی

صفحه 26

شکل (2-8) ترکیب RC موازی

صفحه 27

شكل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

صفحه 30

شكل (2-10) رابطه بین  و           

صفحه 30

شكل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

صفحه 32

شكل (2-12) رابطه بین و

صفحه 32

شكل (2-13) رابطه بین و

صفحه 32

شكل (2-14) منحنی مدار باز با مقادیر  rms

صفحه 36

شكل (2-15) شار پیوندی متناظر شكل (2-14) سینوسی

صفحه 36

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

صفحه 36

شكل (2-17) منحنی مدار باز با مقادیر لحظه­ای

صفحه 40

شكل (2-18) منحنی مدار باز با مقادیر rms

صفحه 40

شكل (2-19) میزان خطای استفاده از منحنی rms  

صفحه 41

شكل (2-20) میزان خطای استفاده از منحنی لحظه­ای

صفحه 41

شكل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

صفحه 42

شكل (2-22) مدار معادل الكتریكی ترانسفورماتور سه فاز سه ستونه

صفحه 43

شكل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

صفحه 44

شكل (2-24) ترانسفورماتور پنج ستونه

صفحه 45

شكل (2-25) انتگرالگیری در یك استپ زمانی به روش اولر

صفحه 47

شكل (2-26) انتگرالگیری در یك استپ زمانی به روش trapezoidal

صفحه 49

شكل (3-1) دیاگرام فازوری خطاها

صفحه 62

شكل (3-2) شكل موج ولتاژ Vab

صفحه 63

شكل (3-3)  شكل موج ولتاژ Vbc

صفحه 63

شكل (3-4) شكل موج ولتاژ Vca

صفحه 63

شكل (3-5)  شكل موج ولتاژ Vab

صفحه 63

شكل (3-6) شكل موج جریان iA

صفحه 64

شكل (3-7) شكل موج جریان iB

صفحه 64

شكل (3-8) شكل موج جریان iA

صفحه 64

شكل (3-9) شكل موج جریان iA

صفحه 64

شكل (3-10)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 65

شكل (3-11)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 68

شكل (3-12)  شكل موجهای جریان ia , ib , ic

صفحه 68

شكل (3-13)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شكل (3-14)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شكل (3-15)  شكل موجهای جریان , iB iA

صفحه 69

شكل (3-16)  شكل موج جریان iA

صفحه 70

شكل (3-16)  شكل موج جریان iB

صفحه 70

شكل (3-17)  شكل موج جریان iC

صفحه 70

شكل (3-18)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 71

شكل (3-19)  شكل موجهای جریان ia , ib , ic

صفحه 71

شكل (3-20)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 73

شكل (3-21)  شكل موجهای جریان ia , ib , ic

صفحه 73

شكل (3-22)  شكل موجهای جریان ia , ib , ic

صفحه 74

شكل (3-23) شكل موج ولتاژ Va

صفحه 74

شكل (3-24) شكل موج ولتاژ Vb

صفحه 74

شكل (3-25) شكل موج ولتاژ Vc

صفحه 74

شكل (3-26) شكل موج جریانiA

صفحه 74

شكل (3-27) شكل موج جریان iB

صفحه 74

شكل (3-28) شكل موج جریان iC

صفحه 74

شكل (3-29) شكل موج جریانiA

صفحه 75

شكل (3-30) شكل موج جریان iB

صفحه 75

شكل (3-31) موج جریان iC

صفحه 75

شكل (3-32) شكل موج جریانiA

صفحه 75

شكل (3-33) شكل موج جریان iB

صفحه 75

شكل (3-34) شكل موج جریان iC

صفحه 75

شكل (3-35) شكل موج ولتاژ Va

صفحه 76

شكل (3-36) شكل موج ولتاژ Vb

صفحه 76

شكل (3-37) شكل موج ولتاژ Vc

صفحه 76

شكل (3-38) شكل موج جریانiA

صفحه 76

شكل (3-39) شكل موج جریان iB

صفحه 76

شكل (3-40) شكل موج جریان iC

صفحه 76

شكل (3-41) شكل موج جریانiA

صفحه 76

شكل (3-42) شكل موج جریان iB

صفحه 76

شكل (3-43) شكل موج جریان iC

صفحه 76

شكل (3-44) شكل موج ولتاژ Va

صفحه 77

شكل (3-45) شكل موج ولتاژ Vb

صفحه 77

شكل (3-46) شكل موج ولتاژ Vc

صفحه 77

شكل (3-47) شكل موج جریانiA

صفحه 77

شكل (3-48) شكل موج جریان iB

صفحه 77

شكل (3-49) شكل موج جریان iC

صفحه 77

شكل (3-50) شكل موج جریانiA

صفحه 77

شكل (3-51) شكل موج جریان iB

صفحه 77

شكل (3-52) شكل موج جریان iC

صفحه 77

شكل (3-53) شكل موج ولتاژ Va

صفحه 78

شكل (3-54) شكل موج ولتاژ Vb

صفحه 78

شكل (3-55) شكل موج ولتاژ Vc

صفحه 78

شكل (3-56) شكل موج جریانiA

صفحه 78

شكل (3-57) شكل موج جریان iB

صفحه 78

شكل (3-58) شكل موج جریان iC

صفحه 78

شكل (3-59) شكل موج جریانiA

صفحه 78

شكل (3-60)  شكل موج جریان iB

صفحه 78

شكل (3-61) شكل موج جریان iC

صفحه 78

شكل (3-62) شكل موج ولتاژ Va

صفحه 79

شكل (3-63) شكل موج ولتاژ Vb

صفحه 79

شكل (3-64) شكل موج ولتاژ Vc

صفحه 79

شكل (3-65) شكل موج جریانiA

صفحه 79

شكل (3-66) شكل موج جریان iB

صفحه 79

شكل (3-67) شكل موج جریان iC

صفحه 79

شكل (3-68) شكل موج جریانiA

صفحه 79

شكل (3-69) شكل موج جریان iB

صفحه 79

شكل (3-70) شكل موج جریان iC

صفحه 79

شكل (3-71) شكل موج ولتاژ Va

صفحه 80

شكل (3-72)  شكل موج ولتاژ Vb

صفحه 80

شكل (3-73) شكل موج ولتاژ Vc

صفحه 80

شكل (3-74) شكل موج جریانiA

صفحه 80

شكل (3-75) شكل موج جریان iB

صفحه 78

شكل (3-76) شكل موج جریان iC

صفحه 80

شكل (3-77) شكل موج جریانiA

صفحه 80

شكل (3-78) شكل موج جریان iB

صفحه 80

شكل (3-79) شكل موج جریان iC

صفحه 80

شكل (3-80) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شكل (3-81) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شكل (3-82) شكل موجهای جریان) (kV با PSCAD

صفحه 82

شكل (3-83) شكل موجهای جریان) (kV با PSCAD

صفحه 82

شكل (3-84) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شكل (3-85) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شكل (3-86) شكل موجهای جریان با برنامه نوشته شده

صفحه 84

شكل (3-87) شكل موجهای جریان با برنامه نوشته شده

صفحه 84

شكل (3-88) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شكل (3-89) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شكل (3-90) شكل موجهای جریان) (kV با PSCAD

صفحه 86

شكل (3-91) شكل موجهای جریان) (kV با PSCAD

صفحه 86

شكل (3-92) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شكل (3-93) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شكل (3-94) شكل موجهای جریان با برنامه نوشته شده

صفحه 88

شكل (3-95) شكل موجهای جریان با برنامه نوشته شده

صفحه 88

شكل (3-96) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شكل (3-97) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شكل (3-98) شكل موجهای جریان) (kV با PSCAD

صفحه 90

شكل (3-99) شكل موجهای جریان) (kV با PSCAD

صفحه 90

شكل (3-100) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شكل (3-101) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شكل (3-102) شكل موجهای جریان با برنامه نوشته شده

صفحه 92

شكل (3-103) شكل موجهای جریان با برنامه نوشته شده

صفحه 92

شكل (3-104) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شكل (3-105) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شكل (3-106) شكل موجهای جریان) (kV با PSCAD

صفحه 94

شكل (3-107) شكل موجهای جریان) (kV با PSCAD

صفحه 94

شكل (3-108) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شكل (3-109) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شكل (3-110) شكل موجهای جریان با برنامه نوشته شده

صفحه 96

شكل (3-111) شكل موجهای جریان با برنامه نوشته شده

صفحه 96

شكل (3-112) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شكل (3-113) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 97

 شكل (3-114) شكل موجهای جریان) (kV با PSCAD

صفحه 98

شكل (3-115) شكل موجهای جریان) (kV با PSCAD

صفحه 98

شكل (3-116) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شكل (3-117) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شكل (3-118) شكل موجهای جریان با برنامه نوشته شده

صفحه 100

شكل (3-119) شكل موجهای جریان با برنامه نوشته شده

صفحه 100

شكل (3-120) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شكل (3-121) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شكل (3-122) شكل موجهای جریان) (kV با PSCAD

صفحه 102

شكل (3-123) شكل موجهای جریان) (kV با PSCAD

صفحه 102

شكل (3-124) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شكل (3-125) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شكل (3-126) شكل موجهای جریان با برنامه نوشته شده

صفحه 104

شكل (3-127) شكل موجهای جریان با برنامه نوشته شده

صفحه 104

شكل (3-128) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شكل (3-129) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شكل (3-130) شكل موجهای جریان) (kV با PSCAD

صفحه 106

شكل (3-131) شكل موجهای جریان) (kV با PSCAD

صفحه 106

شكل (3-132) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شكل (3-133) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شكل (3-134) شكل موجهای جریان با برنامه نوشته شده

صفحه 108

شكل (3-135) شكل موجهای جریان با برنامه نوشته شده

صفحه 108

شكل (3-136) شكل موجهای ولتاژ) (kV

صفحه 109

شكل (3-137) شكل موجهای ولتاژ) (kV

صفحه 110

شكل (3-138) شكل موجهای جریان (kA)

صفحه 111

شكل (3-139) شكل موجهای ولتاژ) (kV

صفحه 112

شكل (3-140) شكل موجهای ولتاژ) (kV

صفحه 113

شكل (3-141) شكل موجهای جریان (kA)

صفحه 114

شكل (3-142) شكل موجهای جریان (kA)

صفحه 115

شكل (3-143) شكل موجهای جریان (kA)

صفحه 116

شكل (3-144) شكل موجهای جریان (kA)

صفحه 117

شكل (3-145) شبكه 14 باس IEEE

صفحه 118

قیمت فایل فقط 20,000 تومان

خرید

برچسب ها : مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع , پایان نامه , مدلسازی , شبیه سازی , اثر اتصالات , ترانسفورماتور , چگونگی انتشار , تغییرات ولتاژ , شبکه , اثر اشباع , پروژه , پژوهش , پایان نامه , مقاله , جزوه , دانلود پروژه , دانلود پژوهش , دانلود پایان نامه , دانلود مقاله , دان

یگانه عربخانی بازدید : 243 دوشنبه 17 خرداد 1395 نظرات (0)

ترانسفورماتور تکفاز و سه فاز

ترانسفورماتور تکفاز و سه فازدسته: برق
بازدید: 1 بار
فرمت فایل: docx
حجم فایل: 19164 کیلوبایت
تعداد صفحات فایل: 86

ترانسفورماتور یك وسیله الكترومغناطیسی ساكن است

قیمت فایل فقط 5,000 تومان

خرید

ترانسفورماتور تکفاز و سه فاز

 

ترانسفورماتور یك وسیله الكترومغناطیسی ساكن است كه می تواند انرژی جریان متناوب را از مداری به مدار دیگر فقط با حفظ اندازه فركانس انتقال دهد و معمولاً به عنوان مبدل ولتاژ به كار می رود. یك ترانسفورماتور از دو سیم پیچ كه بر روی یك هسته مغناطیسی ( مثلاً هوا یا آهن ) پیچیده شده اند، تشكیل می شود.

 

فهرست مطالب:

بخش اول : ترانس تكفاز

مقدمه

ساختمان ترانسفورماتور تكفاز

هسته

سیم پیچ ها

ترانسفورماتور ایده آل ( تكفاز )

محاسبه تعداد دور سیم پیچها

زاویه اختلاف فاز بین ولتاژ اولیه و ثانویه

تبدیل امپدانس توسط ترانس

ترانسفورماتور واقعی ( حقیقی ) تكفاز

مدار معادل ترانسفورماتور واقعی

ترانسفورماتور ایده آل بدون بار

ترانسفورماتور واقعی بدون بار ( با تلفات اما بدون نشت مغناطیسی )

ترانسفورماتور واقعی با بار ( با مقاومت سیم پیچ ها و بدون نشت مغناطیسی )

ترانسفورماتور واقعی با بار ( با مقاومت سیم پیچ ها و با نشت مغناطیسی )

مدار معادل ترانسفورماتور واقعی از دید اولیه

تنظیم ولتاژ ( رگولاسیون ولتاژ )

دیاگرام ساده شده و نمودار فیزوری ترانسفورماتور

نمودار فیزوری ترانسفورماتور

دیاگرام رگولاسیون كاپ

ولتاژ اتصال كوتاه ترانس

مشخصه خارجی ترانسفورماتور

تلفات و راندمان ترانسفورماتور

تلفات هسته ( آهنی )

بررسی ضریب توان (قدرت ) ترانس

آزمایش های ترانسفورماتور

آزمایش بی باری یا مدار باز (OCT یا NLT)

آزمایش اتصال كوتاه (SCT)

راندمان شبانه روزی ( 24 ساعتی )

راندمان سالیانه

مقادیر نامی ( اسمی ) ترانسفورماتور

جریان یورشی ( هجومی ) ترانس

جریان اتصال كوتاه در ترانس

جریان گذرا

جریان اتصال كوتاه دائم

موازی كردن ترانس های تكفاز

حالت های مختلف موازی كردن دو ترانس

حالت ایده آل

حالت با نسبتهای ولتاژ مساوی

حالت با نسبت های ولتاژ نابرابر

اتوترانس ( ترانسفورماتور صرفه ای )

فرمول صرفه‌جویی در مس

تبدیل ترانسفورماتور دو سیمه به اتوترانس

به صورت پلاریته افزایشی

به صورت پلاریته كاهشی

ترانس‌های اندازه‌گیری

ترانسفورماتور جریان

ترانسفورماتور ولتاژ

بخش دوم : ترانسفورماتورهای سه فاز

معرفی و ساختمان ترانس سه فاز

ترانسفورماتورهای سه فاز یكپارچه

اتصال با سیم صفر

اتصال بدون سیم صفر

اتصال مثلث-مثلث یا دلتا دلتا

اتصال ستاره- مثلث

اتصال مثلث- ستاره

اتصال ستاره- زیگزاگ

اتصال مثلث-زیگزاگ

اتصال مثلث باز

اتصال ستاره باز – مثلث باز

اتصال اسكات

اتصال سه فاز

تنظیم ولتاژ در ترانسهای سه فاز

گروه‌های اتصال (برداری) در ترانس سه فاز

موازی كردن ترانس‌های سه فاز

سهم بار دو ترانس سه فاز موازی

هارمونیك‌ها در ترانسفورماتور

هارمونیكها در ترانسفورماتور تكفاز

هارمونیك‌ها در ترانسفورتور سه فاز

معایب هارمونیك‌ها

معایب هارمونیك‌ها

هارمونیك‌های ولتاژ

روش‌های حذف هارمونیك‌ها

تهویه (خنك كردن ) ترانسفورماتورها

قیمت فایل فقط 5,000 تومان

خرید

برچسب ها : ترانسفورماتور تکفاز و سه فاز , ترانسفورماتور تکفاز و سه فاز , ترانسفورماتور , سیم پیچ , تحقیق , پژوهش , پروژه , مقاله , دانلود تحقیق , دانلود پژوهش , دانلود پروژه , دانلود مقاله

اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آمار سایت
  • کل مطالب : 5836
  • کل نظرات : 28
  • افراد آنلاین : 244
  • تعداد اعضا : 13
  • آی پی امروز : 408
  • آی پی دیروز : 347
  • بازدید امروز : 2,721
  • باردید دیروز : 689
  • گوگل امروز : 0
  • گوگل دیروز : 0
  • بازدید هفته : 9,435
  • بازدید ماه : 9,435
  • بازدید سال : 110,146
  • بازدید کلی : 1,545,855